New York: E-cigarette users are exposed to increased concentrations of potentially harmful levels of metals that are linked to elevated oxidative DNA damage, a new study has found.
For the study, published in the journal BMJ Open Respiratory Research, researchers found that the biomarkers, which reflect exposure, effect, and potential harm, are both elevated in e-cigarette users compared to the other groups and linked to metal exposure and oxidative DNA damage.
“Our study found e-cigarette users are exposed to increased concentrations of potentially harmful levels of metals — especially zinc — that are correlated to elevated oxidative DNA damage,” said the study’s lead researcher Prue Talbot from University of California in the US.
Zinc, a dietary nutrient, plays key roles in growth, immune function, and wound healing. Too little of this essential trace element can cause death; too much of it can cause disease. Its deficiency, as well as its excess, cause cellular oxidative stress, which, if unchecked, can lead to diseases such as atherosclerosis, coronary heart disease, pulmonary fibrosis, acute lymphoblastic leukemia, and lung cancer.
Electronic cigarettes consist of a battery, atomizing unit, and refill fluid. Metals in e-cigarette aerosols come mainly from the metal components in the atomizer– nichrome wire, tin solder joints, brass clamps, insulating sheaths, and wicks — as well as the e-fluids that the atomizers heat.
For the study, researchers have examined and quantified urinary biomarkers of effect and potential harm in relation to metals in e-cigarette users.